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Abstract 

The convolution theorem (Hájek [8]) characterizes the weak limit of any regular 
estimator as a convolution of two independent components. One is an optimal 
achievable part and another is a noise. Therefore, the optimal estimator is one 
without the noise part in its weak limit, which is a deeper characterization than 
the Cramer-Rao bound. However, this result is derived under the assumption 
that the specified model is the true one generating the data. In practice, any 
subjectively specified model is more or less deviated from the true one. The 
convolution representation (and the Cramer-Rao bound) should be modified to 
reflect this fact. Here, we study such modifications for the estimation of 
parameters under several cases: Euclidean parameter, Euclidean parameter with 
side information; Euclidean parameter with infinite-dimensional nuisance 
parameter; and the case of infinite-dimensional parameter. In each case, we 
decompose the weak limit of a regular estimator into three independent 
components, with one achievable optimal part, and two noise parts. When the 
specified model is indeed the true one, it reduces to existing convolution 
representation of two components.  
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1. Introduction 

Let ( )⋅0f  be the true density function generating the observed data, it 

may not necessarily be a member from some parametric family. Define 
the parameter ( )00 fG=θ  for some known functional ( ).⋅G  Since ( )⋅0f  is 

unknown, in practice, a parametric model ( )θ⋅f  from some known 

parametric family is often specified as an approximate model to analyze 
the data. 

If it happens that the model ( )0θ⋅f  coincides with the true model 

( )⋅0f  at the parameter ,0θ  then it is well-known that the maximum 

likelihood estimate (MLE) nθ̂  of 0θ  will almost surely (a.s.) converge to 

( ) ( ) ( ) ( ) ,logsuparglogsuparg 00 dxxfxfdxxfxf θθ=θ ∫∫ Θ∈θΘ∈θ
 

which is achieved by ,0θ  the true parameter. 

On the other hand, if the model ( )θ⋅f  does not coincide with ( )⋅0f  for 

some ,θ  it is known (Huber [10]; Pfanzagl [22]) that the MLE from the 
parametric model will a.s. converge to the pseudo-true parameter set ,1Θ  

( ) ( ) .logsuparg 01 dxxfxf θ=Θ ∫Θ∈θ
 

The points in 1Θ  may not necessarily correspond to the “true” 

parameter(s) generating the data. Similarly, in the Bayesian setting, if 
the wrong likelihood model is specified, the posterior will asymptotically 
concentrate on 1Θ  (Berk [4]). 

However, estimators of 0θ  based on ( )θ⋅f  can still be consistent even 

if ( ) ( ),00 ⋅≠θ⋅ ff  for example, if ( )θ⋅  and ( )⋅0f  have the same mode. We 

are only interested in this case, as comparing inconsistent estimators is 

meaningless. Let ( )0θI  be the Fisher information (matrix) and D→  stand 

for convergence in distribution. Assume an estimate nθ  be consistent and 
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asymptotically normal, i.e., ( ) ( ).,0 Ω→θ−θ 0Nn D
n  The Cramer-Rao 

theorem asserts that ( ),0
1 θ≥Ω −I  here ”≥“  is in the semi-definite 

matrix sense, and any estimator that achieve this lower bound is an 
efficient estimator. Under general conditions, the MLE and Bayes 
estimate are efficient estimators. The convolution theorem (Hájek [8]), 
based on the assumption that ( )θ⋅f  is the correct model for the observed 

data, states that for any regular estimator nT  with weak limit W, there 

are random variables Z and V such that 

( ( )),,0~, 0
1 θ⊕= −INZVZW  

where VZ ⊕  means independent summation of Z and V. Here, we see 
that Z is the optimal weak limit and V is undesirable noise. Inagaki [12] 
discovered a similar result as the above, in the same year, under 
considerably stronger conditions.  

The Cramer-Rao theorem gives the achievable lower bound ( )0
1 θ−I  

of the asymptotic variance of any asymptotically unbiased estimators. 
The convolution theorem further characterizes the achievable optimal 
weak limit of a regular estimator: It is the normal random variable Z 

with mean zero and variance ( ).0
1 θ−I  An estimator is efficient iff its 

weak limit ZW =  or equivalently .0=V  The convolution theorem has 
had profound impact and generated considerable interest in the 
statistical field, and different versions of it (van der Vaart [32]; Pfanzagl 
[23]) and generalizations to infinite-dimensional parameters have been 
proposed (for example, Millar [21]; Schick and Susarla [27]; LeCam [19]; 
Beran [3]; Janssen and Ostrovski [13]), and in the Bayesian framework 
(van den Heuvel and Klassen [31]; Sen [28]). But to our knowledge, all 
these results are derived under the assumption that the model ( )0θ⋅f  is 

the true one generating the data. This assumption is unlikely to be the 
case in practice, as any subjectively specified parametric model is more or 
less biased from the true one. Thus, these classical results should to be 
modified to reflect the model uncertainty, which is the motivation of this 
study. 
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We consider several cases, first the inference of Euclidean 
parameter(s), without and with side information on the specified model, 
then with nuisance parameter(s), and lastly the case of infinite-
dimensional parameter. We show that generally in each case, the 
convolution representation has three independent components, which 
reduce to two components only if the assumed model is the true one 
generating the data. Thus, any parameter estimates based on the 
postulated model has bigger variation than that based on the existing 
result, and the modified Cramer-Rao lower bound is no smaller than the 
inverse Fisher information; it equals the latter only if the model happens 
to be the correct one. 

2. Results 

We first consider the case of estimation of Euclidean parameter(s) in 
the specified model, then the case with side information, with nuisance 
parameter, and the case of infinite-dimensional parameter. Let 

XXX n ,,,1 …  be i.i.d. with ( ),0 ⋅f  which is unknown. In practice, the 

investigator often subjectively specifies it by a parametric model ( )θ⋅f  as 

a member from some known parametric family, with ( )′θθ=θ d,,1 …  a                  

d-dimensional parameter. Let  ( ) ( ) ( ) ( ) ( ),,log θθ∂∂=θθ=θ xlxlxfxl fff  

( ) ( ) ( ) ( ) ( ) ( ) ( ),,, 11
2 θ=θθ=θθθ′∂θ∂∂=θ ∑∑ == if

n
inif

n
inff XlLXlLxlxl  

and ( ) ( ).1 θ=θ ∑ = if
n
in XlL  Let 

{ ( ) ( )θ⋅θ⋅= jj ff :F  be a density for each ,θ  and ( ) ( ) }Jjffj ∈⋅=θ⋅ ,00  

be the class of all parametric densities, which pass through ( )⋅0f  at .0θ  It 

is the class of all possible ‘true’ models with parameter θ  for the 
observed data. Note that ( )θ⋅f  is a member of F  only if it is a correctly 

specified parametric model of the data. Let ( ) [ ( )]θ−=θ XlEI fff 0  and  
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( )
( )

( )0maxarg θ=θ⋅
∈θ⋅∗ jj

ff
If

F
 

be the ‘most favorable’ true model for the observed data, which is 
unknown. The max here is in the sense of matrix positive definiteness. 

In our study, we assume the following conditions: 

(C1) ( )θ⋅fl  is twice differentiable with respect to .θ  

(C2) ( ) ( ) .000 =θ∫ dxxlxf f  

(C3) ( ) ∞<θfI  is non-singular in a neighbourhood of .0θ  

For the parametric model ( ),θ⋅f  we will see that ( )0
1 θ−

fI  is the 

effective information bound, instead of the inverse Fisher information 

( ),0
1 θ−I  the classical information bound, where ( ) ( )[ ( )].θ−=θ θ⋅ XlEI ff  

It is known that ( ) ( )0
1

0
1 θ≥θ −− II f  with =“ ” iff ( ) ( )⋅=θ⋅ 00 ff  (Serfling 

[29], p.257). 

When the estimator nθ̂  is the MLE of 0θ  based on ( ),θ⋅f  

[ ( )] ( ),ˆ 0
1

0 θθ−=θ−θ −
nnnn LL  

where nθ  is an intermediate point between nθ̂  and .0θ  So under (C1) 

and (C3) (and some further conditions on ( )⋅nL ), 

( ) ( ) ( ) ( ) ( ),, 0
.s.a1

00
.s.a

0
1 θ→θ−θ→θ −− ∫ fnnfn ILndxxlxfLn  

thus nθ̂  is asymptotically unbiased if and only if (C2) holds. Thus, (C2) 

seems necessary for many estimators based on ( )θ⋅f  to be asymptotically 

unbiased. Note in this case, 
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( ) ( ) ( )
( ) ( ) ( ) ( )dxxlxlxfdxxf
xfxfI fff θ′θ+
θ
θ

−=θ ∫∫ 00  

 ( ) ( )( ),0 θ′θ≠ XlXlE fff  

which differs from the classical result ( ) ( )( ( )) ( )θ⋅θ⋅ =θ−=θ fff EXlEI  

( ) ( )( ).θ′θ XlXl ff  

From now on, let bnn
21

0
−+θ=θ  for some ,Cb ∈  the complex 

plane. A rate 21n  consistent estimator ( )nnn XXTT ,,1 …=  is said to 

be regular, if under ( ) ( ) WTnWf D
nnnn →θ−=θ⋅ :,  for some random 

variable W, and the result does not depend on the sequence { }.nθ  Let 

VZ ⊕  denote the summation of two independent random variables Z 
and ( )θIV and;  be the Fisher information for ( )θ⋅f  at .θ  The 

convolution theorem (Hájek [8]), based on the assumption that ( )θ⋅f  is 

the correct model for the observed data, states that for any regular 
estimator nT  with weak limit W, there is a random variable V such that 

( ( )).,0~, 0
1 θ⊕= −INZVZW  

The Cramer-Rao theorem gives the lower bound of the asymptotic 
variance of any asymptotically unbiased estimators. The convolution 
theorem further characterizes the weak limit of an asymptotically 
optimal estimator: It is a normal random variable with mean zero and 

variance ( ).0
1 θ−I  An estimator is efficient iff .0=V  Since any 

subjectively specified model is more or less deviated from the true one, 
below we modify this convolution result under the possibly wrong model 
( )θ⋅f  specification. In some cases, the convergence rate of Euclidean or 

infinite-dimensional parameters can be different from .n  For example, 
for distributions with singularity of order ,α  the convergence rate of 

Euclidean parameter in the model is ( ) ( ).011,11 ≠α<α<−= α+nrn  
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In this case, the local parameter is defined as ,1
0 brnn

−+θ=θ  and the 

local likelihood ratio is often asymptotically non-normal, see Ibragimov 
and Has’minskii [11]. For Euclidean parameter takes only finite number 
of possible values, the convergence rate nr  is exponential (for example, 

Hammersley [9]; Robson [26]). Convergence rate nr  of infinite-

dimensional parameters is often slower than .n  In these cases, the 
weak limit of ( )0θ−θnnr  is often non-Gaussian, and the how to find 

specific form of the optimal weak limit in convolution representation, if 
exists, seems still open. 

 We first give a modification of the existing convolution theorem 
under the specified model (not necessarily the true one), for the case of 
Euclidean parameter. 

Theorem 1. Assume (C1)-(C3). Then for any rate n  consistent 
regular estimator ( )nn XXT ,,1 …  based on the model ( ),θ⋅f  with weak 

limit ( ),lim nnn TnW θ−=  we have 

( ( )) ( ( )),,0~,,0~, 0
1

0
1 θΩθ⊕⊕= −−
∗

NVINZUVZW f  

 ( ) ( ) [( ( ) ( )) ( )] ( ).0
11

0
11

000
1

0
1 θθ−θ−θθ=θΩ −−−−−−

∗∗∗∗ fffff IIIII  

Remark 1. The noise U is due to the fact that the estimator nT  is 

not optimal based on the model ( ),θ⋅f  thus for a regular estimator of 0θ  

based on the given model, its optimal achievable weak limit is ,VZ ⊕  

and the corresponding modified Cramer-Rao lower bound on asymptotic 

variance of any asymptotically unbiased estimator is ( ) ( )0
1

0
1 θΩ+θ −−
∗f

I  

( ) ( ),0
1

0
1 θ≥θ= −− II f  with ”“ =  iff ( ) ( ).00 ⋅=θ⋅ ff  Super-efficiency may 

happen, under some conditions, at some ,θ  in that there are some 

estimator, whose asymptotic variance can be smaller than ( )θ−1I  at 

these ,θ  but all such points at most constitute a Lebesque null set 



AO YUAN and QIZHAI LI 112

(LeCam [15]). The noise U is due to the deviation of model ( )0θ⋅f  to the 

optimal true data generating model ( ) 0. =⋅∗ Vf  iff ( ) ( ),θ⋅=θ⋅ ∗ff  then 

the optimal weak limit is Z, and we get the original convolution theorem. 

Remark 2. When ( )nnTn θ−  is asymptotically linear, the noise U 

can be further characterized. In this case, by the general central limit 

theorem (see Araujo and Giné [1]), the weak limit of ( )nnTn θ−  must 

be of the form ( ) ( ),, 2 µ⊕δ⊕σ PiosaN  where δ  is some point mass, and 

( )µPois  is a generalized Poisson distribution corresponding to a Lévy 

measure .µ  Thus, we must have ( ) ( ),0
1

0
12 θΩ+θ≥σ −−
∗f

I  and let 

( ) ( ),0
1

0
122

0 θΩ−θ−σ=σ −−
∗f

I  we have ( ) ( ).,0 2
0 µ⊕δ⊕σ= PiosNU  

Droste and Wefelmeyer [7] derived Hájek’s convolution 
representation with technically weaker conditions than regularity. A 
further almost everywhere version of this representation without the 
regularity condition by the works of a number of authors, was stated in 
Beran ([3], Theorem 2.3). We conjecture that Theorem 1 and the results 
below are still valid under these weaker conditions, but we will not 
persue them here for succinctness. LeCam [17] and Janssen and 
Ostrovski [13] generalized the convolution theorem to the case in which 
the optimal weak limit need not be Gaussian, and in the infinite-
dimensional parameter space. Jeganathan [14] studied the case the 
optimal weak limit is mixed normal. 

Let 1Θ  be as given in the Introduction. In the case { }∗θ=Θ1  has a 

single point, White [34] showed that 

( ) ( ( )),,ˆ
∗∗ θ→θ−θ CNn d

n 0  

where ( ) ( ) ( ) ( ) ( ) ( ( )) ( ) ( ( )θ=θθ=θθθθ=θ −− XlEBXlEAABAC ffff 00 ,,11  

)( ).θ′ Xlf  Thus, when ( ) ,F∈/θ⋅f  the MLE based on it may not be 

efficient in the sense of 0=U  in Theorem 1.  
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With side information. In some cases, there is an additional 
information about the parameter, often be summarized by 

[ ( )] 0, 0 =θXgEf  for some known function g, or vector of functions. 

Incorporating such information often leads to improved accuracy of 
inference (for example, Qin and Lawless [25]; Xu and Wang [35]). Let 
( )gf ,θ⋅  be the density with the side information incorporated, and 
( )gl ,θ⋅  be the corresponding log-likelihood, though generally the forms 

may not be known. We need the following conditions: 

(C4) [ ( ) ( )] ∞<θ′θ=Λ 00 ,,: XgXgEf  is invertible, and ( ) =θ :,0 gA  

[ ( ) ( )] ., 00 ∞<θθ XgXlEf  

(C5) [ ( ) ( )] .0,, 00
1

0 =θθ− gXfgXfEP  

Theorem 2. Under (C1)-(C5). Then for any rate n  consistent 
regular estimator ( )nn XXT ,,1 …  based on the model ( )θ⋅f  and side 

information [ ( )] ,0, 0 =θXgEf  with weak limit ( ),lim nnn TnW θ−=  

we have 

( ( )) ( ( )),,0~,,0~, 0
1

0
1 gNVgINZUVZW f θΩθ⊕⊕= −−
∗

 

where ( ) ( ) [( ( ) ( )) ( )] 11
0

11
000

1
0

1 −−−−−−
∗∗∗∗

θ−θ−θθ=θΩ gfffff IgIgIgIgIg  

( );0θ ( ) [ ( ) ( )] ( ) ( ) ( ) −θθ=θθ′θ=θ −
00

1
0000 ,,,,0 XlIgxegXegXeEgI fffPf  

( ) ( ).,, 0
1

0 θΛθ′ − xggA  

The noise U is due to the fact that the estimator nT  is not optimal 
based on the model ( ),θ⋅f  thus for a regular estimator of 0θ  based on the 
given model, its optimal achievable weak limit is ,VZ ⊕  and the 
corresponding modified Cramer-Rao lower bound on asymptotic variance 
of any asymptotically unbiased estimator is ( ) ( ) ( )0

1
0

1
0

1 θ=θΩ+θ −−−
∗ ff II  

( ),0
1 θ≥ −I  with ”=“  iff ( ) ( ).00 ⋅=θ⋅ ff  The noise V is due to the 

deviation of model ( )0θ⋅f  from the optimal true data generating model 
( ).⋅∗f  0=V  iff ( ) ( ),θ⋅=θ⋅ ∗ff  in which case the optimal weak limit is Z. 
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With nuisance parameters. Now, we consider the case there is a 
nuisance parameter g in the model ( )., gf θ⋅  We assume g is in a Banach 

space B, which include the Euclidean parameter as special case. To 
simplify presentation, we assume g has one component, the result for 
multi-components case is parallel. We need the score in this case, let 
( ) ( ).,log, gxfglf θ=θ  There are several commonly used derivatives 

including Gâteaux, Hadamard (compactly), pathwise, Hellinger, and 
Fréchet differentials. Often, Gâteaux differentiability is too weak (even 
discontinuous functional can be Gâteaux differentiable), Fréchet 
differential is too strong (many commonly used statistical functionals do 
not have Fréchet differentiability), and Hadamard differential is stronger 
than Gâteaux and weaker than Fréchet and is considered appropriate to 
use in most statistical problems. The Hellinger differential is a special 
form of the Fréchet differential, pathwise differential is a special form of 
Hadamard differential and is often used for semi-and-nonparametric 
models. When all these differentials exist, they are all equal (except that 

the Hellinger differential and the score only differ by a factor of 221f ), 

so their differences are only the existences of these differentials. The 

Hellinger differential on 21f  is used in many articles, instead of 
Hadamard differential on ( ),, gxl θ  to deal with differentials for B-valued 

parameters, it has the advantage that the referred quantities are 

automatically in ( )0
2 PL  with norm 1. But for higher order differentials, 

this advantage is not obvious. In this article, we use the Hadamard 
differential for B-valued parameters, and assume the existence for all 
referred quantities. Let 0P  be the probability distribution for the        

‘true’ model ( )020; PLf  be the Hilbert space of all functions                       

h with ( ) ( ) ∞<= ∫ dtPthh P 0
22

0
 and define the inner product 

( ) ( ) ( ) ( ( )).,:, 0200 PLghdtPtgthgh P ∈=>< ∫  Let ( ) ( )dttgthgh ∫=>< ,  

and .,,,2 B∈∀><= ghhhh  For fixed x and θ  and g, let ( )( )gxlf ,; θ  

be the ordinary partial derivative of ( )gxlf ,θ  with respect to its first 
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component ,θ  and we adopt the following version of definition of the 

Hadamard differential (Bickel et al. [5], p.454) ( )( ) ( )0
2,. :;, PLhglf →θ⋅ B  

of ( )gxlf ,θ  with respect to g in the direction :B∈h  for all compact 

subset S of B, 

( ) ( ) ( )( )
,0

;,,, ,.
→

θ−θ−+θ



 hgxlgxlhgxl fff  as 0→  uniformly in .Sh ∈  

We can define the second order differentials ( )( ) ( )( )hgxlgxl ff ;,,, ,, θθ ⋅⋅⋅⋅  as 

the Hadamard differential on ( )( )gxlf ,, θ⋅  with respect to g, and 

( )( )21
, ,;, hhgxlf θ⋅⋅  be that of ( )( )1

, ,, hgxlf θ⋅  with respect to g in the 

direction ,2h  the latter is a bi-linear operator: ( ).0
2 PL→× BB  When 

these second order differentials exist, we say ( )glf ,θ⋅  is twice 

differentiable. 

For fixed θ  and ( )( ) ( )0
2, :,,, PLhglg f →θ⋅⋅ B  is a linear operator. 

Now, let ( ) ( )nnn gff ,θ⋅=⋅  be the local model, with bnn
21

0
−+θ=θ  and 

( ) ( ) ( ),21 ⋅+⋅=⋅ − hnggn  for some ., H∈hg  Let  

{ ( ) ( )gfgf jj ,:,~ θ⋅θ⋅=F  be a density for each ,, H∈∈θ gR  

and ( ) ( ),, 00 ⋅=θ⋅ fgfj  for some }Jjg ∈,  be the class of all parametric 

densities pass through ( )⋅0f  at ( ).,0 gθ  To simplify notation, let 

( ) ( )( ) ( ) ( )( ),,,,,, 0
,

0
, hgxlhxAgxlx ffff θ=θ=ρ ⋅⋅  and ( ) ( )xbhgbx ff ρ=α ,,;   

( )., hxAf+  Note for fixed ( ) ( )0
2:,, PLxAx f →⋅ B  is a linear operator. 

By the projection theorem in Luenberger ([20], p.59) and the assumption 

( ) ,0
2 B⊂PL  there is an ( )0

2 PLhf ∈∗  such that 

( ) ( ) ( ) ( ).,,, 0
2

0 PLhhAhA fPfff ∈∀⋅⊥⋅−⋅ρ ∗  
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Let ( ) ( ) B→∗
0

2: PLAf  be the adjoint of ,fA  it is determined by 

( ) ( ).,,,, 0
2

0 PLghgAhgAh Pf ∈∀∈∀><=>< ∗ B  When ( ) ff AA ∗  is 

invertible, (( ) ) ( ) .1
fffff AAAh ρ= ∗−∗∗  Let 

( ) ( )( ) ( )( ) ( )( ),,;,;,2,,,,; ,,,2 hhgxlhgxblgxlbhgbx ffff θ+θ+θ=θβ ⋅⋅⋅⋅⋅⋅  

( ) ( ),,,1,;,, 00 0
∗∗ −θβ−=θ fPff hgXEhgI  

and 

( )
( )

( )~ .,,maxarg, 0
,,

∗

∈θ⋅
∗ θ=θ⋅

∗ jj
jfj

ff
hgf

hgIgf
F

 

Assume the following conditions: 

(C6) ( )gl ,θ⋅  is twice differentiable with respect to ( )., gθ  

(C7) ( ) ( ) ( ) ( ) ( ) ( ) .,0;,, 0
,

00
,

0 B∈∀=θ=θ ⋅⋅ ∫∫ hdxhgxlxfdxgxlxf ff  

(C8) ( ) ∞<θ ∗
ff hgI ,,  is non-singular in a neighbourhood of ( ).,0 gθ  

Theorem 3. Assume (C6)-(C8) and that ( ) .0
2 B⊂PL  Then for any 

rate n  consistent regular estimator ( )nn XXT ,,1 …  of 0θ  based on the 

model ( )gf ,θ⋅  ( B∈g  is a nuisance parameter), with weak limit  

nW lim=  ( ),nnTn θ−  we have 

( ( )) ( ( )),,,0~,,,,0~, 0
1

0
1 gNVhgINZUVZW ff θΩθ⊕⊕= −∗−
∗

 

( ) ( )[( ( ) ( )) ( )] 1
0

11
000

1
0

1 ,,,,,,,,, −∗−−∗∗∗−−
∗∗∗∗∗∗

θ−θ−θθ=θΩ ffffffff hgIhgIhgIhgIg  

( ).,,0
1 ∗−

∗∗
θ× ff hgI  

As in the cases before, the noise U is due to the fact that the estimator 

nT  is not optimal based on the model ( ),, gf θ⋅  thus for a regular 
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estimator of 0θ  based on the given model, its achievable optimal weak 

limit is ,VZ ⊕  and the corresponding modified Cramer-Rao lower bound 

on      asymptotic variance of any asymptotically unbiased estimator, in the 

presence of nuisance parameter ,H∈g  is ( ) ( )ghgI ff ,,, 0
1

0
1 θΩ+θ −∗−

∗∗
 

( ) ( ) ( ) ( ),,,1;:,,,, 2
,0

1
0

1
0

∗
θ⋅

∗−∗− −α=θ≥θ= ffgfff hgXEhgIhgI  with ”=“  

iff ( ) ( )., 00 ⋅=θ⋅ fgf  The noise V is due to the deviation of model 

( )gf ,0θ⋅  to the optimal true data generating model ( ) 0., =θ⋅∗ Vgf  iff 

( ) ( ),,, gfgf θ⋅=θ⋅ ∗  and then we get the result in Begun et al. [2]. 

Infinite dimensional parameter. Now, we consider estimation of g in 

the model ( ) ., B∈⋅ ggf  For fixed g, let ( ) ( )0
2:; PLhglf →⋅ B  be the 

Hadamard differential of ( )glf ⋅  in the direction .B∈h  For conciseness, 

we concentrate on the case g has only one component. If ( )′= kggg ,,1 …  

with each ( )hgxlg fj ,,B∈  will be ,kk BB →  and the results will be 

parallel, but the presentation and notations will be more involved. In 

that case ( ) ,,,1
′= khhh …  and ( ) ( ( ) ( )) .,,,,, 11

′= kkfff hgxlhgxlhgxl …   

Let ∗B  be the dual space of B, and ∗∗ ∈∀ Bb  and ,B∈∀b  denote 

( )bb∗  the value of ∗b  at b. When there is an inner product B>⋅⋅< ,  on B, 

by the Rize representation, corresponds to this inner product, there is a 

unique element B∈∗b  such that ( ) B>=< ∗
∗ bbbb ,  for all .B∈b  In fact, 

let acca >=< ,  be the inner product in Euclidean space, then ( ) =∗ bb  

( ) ,,1,1, BB ∈>>=<< ∗∗ Abbbbb τ  thus, ,1τ∗∗ = bb  the adjoint of ∗b  

evaluate at 1. Note in some texts, such as in Bickel et al. ([5], Chapter 5), 
∗b  and ∗b  are denote by the same notation for simplicity. 
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For fixed ,0g  let ( ) ( )0
2

0 :, PLbglf →⋅ Bτ  be the adjoint operator of 

( ),,0 ⋅gxlf  which is determined by 

( ) ( ) ( ) .,,,,,, 0
2

00 0 BB ∈∀∈∀>⋅=<>⋅< bPLhbglhbhgl Pff
τ  

For fixed x and ( ),,0 hg  the second order Hadamard differential 

( )10 ,, hhgxlf  of ( )0gxlf  in the direction 1h  is defined analogously. It 

is the Hadamard differential of ( )hgxlf ;0  with respect to 0g  in the 

direction .1h  

For ( ) [ ( )]hhgXlEhhgIh fPf ,;:,, 00 0=∈ B  is the information of 

0g  in the model ( )0gf ⋅  at direction h, and ( ) RgI f →×⋅⋅ BB:,  is a 

covariance functional. Just as a covariance (matrix) uniquely determines 
a zero mean Gaussian random variable in Euclidean space, the 
covariance functional uniquely determines a zero mean (in the Pettis 
sense) tight Gaussian random element in B (see, for example, Vakhania 
et al. [30]). As there is no Lebesque measure in general Banach space, 
and so no density function with respect to such measure, the distribution 
of random element Z in B is often characterized by the real random 

variable Zb∗  for each .∗∗ ∈ Bb  For Gaussian random element Z with 

mean zero and covariance functional ( ),, hhC  the distribution of Zb∗         

is the Gaussian random variable with mean zero and variance 

( ) ( ),1,1:, ∗∗
∗∗ = bbCbbC  with ∗b  the Rize representer of ∗b  with respect 

to the inner product ., 0P>⋅⋅<  

Unlike the Euclidean case, many parameters in B are not rate- n  

estimable, but still some of them are. Let D→  stands for weak 

convergence in ,kR  and D⇒  for that in ( ) { ( ) ( )tgggTl TtT ∈
∞ =⋅= sup::  

},∞<  with respect to the metric .T⋅  Note weak limit of random 
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elements in B is characterized via that of any linear functional of the 

elements. For B∈g  is not rate- 21n  estimable, often its rate is slower 

than ,21n  the weak limit is often non-Gaussian, and convolution 

representation for this case have not been seen. Let hnggn
21−+=  for 

.B∈h  Since there is no Borel measure on B, distributions of random 

element V in B is characterized by that of the real random variables Vb∗  

for .∗∗ ∈ Bb  We define an estimator nĝ  of g to be regular, if under 

( ),ngf ⋅  

( ) ,ˆ Vggn D
nn ⇒−  

for some tight random element ,B∈V  which does not depend on the 

sequence { };ng  and nĝ  to be weakly regular (Bickel et al. [5], p.181), if 

,∗∗ ∈∀ Bb  

( ) .ˆ Vbggbn D
nn

∗∗ →−  

Let 

{ ( ) ( )gfgf jj ⋅⋅= :0F  be a density for each ,H∈g  and ( ) ( ) }Jjfgf j ∈⋅=⋅ ,00  

be the class of all parametric densities pass through ( )⋅0f  at .0g  

Assume the following conditions: 

(C9) ( )glf ⋅  is twice Hadamard differentiable with respect to g. 

(C10) ( ) ( ) .,0;00 B∈∀=∫ hdxhgxlxf f  

(C11) ( )hhgI f ,,0  is positive definite. 

For infinite-dimensional parameters, the convergence rates of their 

estimators are often slower than n  and the weak limits are often non-
Gaussian, a natural (and difficult) question is whether and under what 
conditions the convoluiton theorem holds for the general case? When the 



AO YUAN and QIZHAI LI 120

convergence rate is not ,n  the problem is much harder, as the LAN 

property no longer holds with such rates. However, a number of papers 
have tackled this question, such as in Millar [21] and LeCam [19]. These 
authors considered very general parameter spaces, established 
convolution results for estimators regardness of their convergence rates 
or forms of their weak limits. But these results are mostly of the 
existence type, not the specific type. Also, it is unclear whether one of the 
two components in their convolution representation is optimally 
achievable. For example, given an infinite-dimensional parameter and/or 
the corresponding likelihood model, although the optimal convergence 
rate for estimators of this parameter can be determined in principle 
(LeCam [18]; Birgé [6]), but it is still unknown, if there is an optimal 
weak limit of its estimators, and what is its specific form, if it exists. 
Pötzelberger et al. [24] gave examples in which the infinite-dimensional 
version of the convolution theorem does not hold in general abstract 
space, but does hold under some regularity conditions, the results are of 
existence type. Janssen and Ostrovski [13] gave more detailed account of 
the optimal weak limit. Their Theorem 2.3 gives a convolution result for 
arbitrary convergence rate ,na  for linear functions of infinite-

dimensional parameter and their estimate, with the assumption that the 
two involed estimators are asymptotically joint Gaussian. They gave the 
optimal weak limit as the minimal variance random element defined in 
their condition (a), p.7, but how to find this random element is still not 
clear. Also, the joint asymptotic Gaussian assumption can only be 
satisfied for a few parameters in the infinite-dimensional spaces, and in 

these cases often .nan =  Their Theorems 3.1 and 4.1 established 

convolution results for infinite-dimensional parameters in abstract 
spaces, but again the results are of existence type. 

Convolution theorem and information bound for rate n -estimable 
parameters of the form ( ) ,: BP →Pν  for some known functional ( )⋅ν  and 

a family P of distributions, can be found in BKRW [5] and van der Vaart 
and Wellner [33]. There the results are in terms of the Hadamard 
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differential of .ν  Below, we only consider rate n -estimable parameter 
,B∈g  which is implemented in the likelihood model, not in the form 

( )Pg ν=  for some known ( ),⋅ν  and we do not assume the model to be 

true. 

Theorem 4. Assume (C9)-(C11), and that nĝ  is a regular estimator of 

g with weak limit W. 

(i) If ( ) ,0F∈/⋅ gf  then 

( ) ,ˆ 0 VUZWggn D
n ⊕⊕=⇒−  

where Z is the Gaussian element with zero mean and covariance 

functional ( ) ) 1
0

1
0

1 ,,,,, 0
−−− ∈>=< ooo f

o
Pff

GfhGhhhgI F  is the inverse of 

the linear operator ,: ∗→ BBofG  which is determined by ( ) =21, hhI of  

,,,, 2122 0 B∈∀>< hhhGh Pf o  and B∈VU ,  are random elements 

independent of Z. 

(ii) If ( ) ,0F∈⋅ gf  let ( )hglf ,0⋅τ  be the adjoint of ( ).,0 hglf ⋅  If 

( ) 0F∈⋅ gf  and the range ( ( )) ( ),, 0
2

0 PLgxlR f ==⋅ Bτ  then 

( ) ,ˆ 0 UZWggn D
n ⊕=⇒−  

where Z is the Gaussian element with zero mean and covariance 

functional ( ) ( ) [ ( ) ( )],,~,~,,,,, 2010210
1

0
1

0
∗∗∗∗−− =⋅⋅ bgXIbgXIEbbgIgI Pff  

and for fixed ( ) ( )∗∗ = bgxIbgxIx ,~:,~, 00  is the solution of the equation 

( ( )) .,,~, 00 B∈∀= bbbgxIgxlf
τ  

Let ( ) ( ),ˆ 0ggbnbW nn −= ∗∗  it is a random process indexed by 

.∗∗ ∈Bb  Let ,sup ,1 hbb hh
∗

∈=
∗ =∗ BB  and the distance ( )⋅⋅,d  in ∗B  as 
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( )∗∗
21 , bbd  .21 ∗

∗∗ −= Bbb  Using Theorem 1 (ii), under suitable compactness 

conditions (see, for example, van der Vaart and Wellner [33]) on ,∗B  we 

can have ( ) ( ) ( ) ( )⋅⊕⋅=⋅⇒⋅ UZWW D
n  in ( ),∗∞ Bl  with ( )⋅Z  the Gaussian 

random element indexed on ,∗B  i.e., ∗B  is a Gaussian Donsker class for 

( ).⋅nW  
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Appendix 

Proof of Theorem 1. Let ( ) ( )[ { }]itYEt fY expθ⋅=φ  be the 

characteristic function of a random variable Y under model ( ).θ⋅f  We are 

to show ( ) ( ) ( ) ( )tttt ZVUWn n φφφ=φlim  with ( ( ))0
1,0~ θΩ−NV  and for 

some U. In fact, by (C2) and (C3), we have the following modified version 
of locally asymptotic normality (LeCam [16]) of the likelihood ratio: 

( ) ( ) ( ) ( ),12: 0
2

0 Pfnnnnn oIbbSLL +θ−=θ−θ=λ  

where ( ) ( ( )),,0~ 01,01
21 θ→θ= ∑ =

−
f

D
if

n
in INSXlnS  with ( ) =θ01,fI  

[ ( ) ( )].000 θ′θ XlXlEf  When ( ) ( ) ( ) ( ) ( )., 0001, θ=θ=θθ⋅=θ⋅
∗∗ fff IIIff  

 

Note 

( ) ( ) [ ( ) ( )] ( ) ( ).: 000000 θ−θ=θ−θ−θ=θ δ∗∗∗
IIIIII fffff  
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In the above, when ( ) ,F∈/θ⋅f  it is known that ( ) ( )00 θ≥θ
∗ ff II  

(Serfling [29], p.257); and by definition of ( ),θ⋅∗f  when ( ) ,F∈θ⋅f  we 

still have ( ) ( ),00 θ≥θ
∗ ff II  thus ( ) .00 ≥θδI  

By the formula ( ) ( ) ,1111111 −−−−−−− −+=− CABCADBAACBDA  

we have ( ) ( ) ( ) ( ( ) ( )) ( ) =θθ−θθ+θ=θ −−−−
δ

−−−
∗∗∗∗

:0
11

0
1

0
1

0
1

0
1

0
1

fffff IIIIII  

( ) ( ).0
1

0
1 θΩ+θ −−
∗f

I  Here ( )0θΩ  is positive definite, hence a covariance 

matrix. 

By assumption of regularity, 

( ) ( )[ { }] ( )[ { ( )}]bWitEitWEt nfnfW nn −==φ θ⋅θ⋅ expexp0  

( )[ { ( ) }] [ { ( ) ( ) }],2expexp 0
2

0 θ−+−→λ+−= θ⋅ fnnnf IbbSbWitEbWitE  

where the last step above is by the same argument as in Begun et al. [2]. 
Below for simple of exposition, we assume θ  is 1-dimensional, the proof 
is similar for multivariate .θ  Since Cb ∈  is arbitrary, take 

( ),0
1 θ−= −

fitIb  we get 

( ) ( ) ( ( ) ) ( ) ,22 2
0

1
0

1
0

2 tISIWitIbbSbWit fff θ−θ−=θ−+− −−  

thus, 

( ) [ { ( ( ) }] { ( ) }2expexplim 2
0

1
0

1 tISIWitEt ffWn n θ−θ−=φ −−  

{ ( ) } { ( ) } [ { ( ( ) }]SIWitEttI ff 0
12

0
12

0
1 exp2exp2exp θ−θΩ−θ−= −−−
∗

 

( ) ( ) ( ) ( ).
0

1 ttt SIWVZ
f θ− −φφφ=  

Now take ( ) ,0
1 SIWU f θ−= −  and note that when ( ) ( ),θ⋅=θ⋅ ∗ff  

( ) ( ),00 θ=θ
∗ff II  and ,0=V  the proof is complete. 
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Proof of Theorem 2. Let ( )gf ,θ⋅  be the density with the side 

information in g incorporated, ( )gxl ,θ  be its log-likelihood, and 

( ) ( )gXlEgI Pf ,00 0 θ−=θ  be the corresponding information for .0θ  By 

(C6), ( ) [ ( ) ( )].,, 000 0 gXlgXlEgI ffPf θ′θ=θ  Define ( )gLn θ  accordingly. 

Now, the local likelihood ratio has the asymptotic form 

( ) ( ) ( ) ( ),12: 0
2

0 Pfnnnnn ogIbbSgLgL +θ−=θ−θ=λ  

where ( ) ( ( )).,0~, 001
21 gINSgXlnS f

D
if

n
in θ→θ= ∑ =

−  Here ( )gI f 0θ  

generally has an unknown form as is ( ),,0 gf θ⋅  we need to evaluate it in 

terms of ( )0θfI  and functional(s) of g. 

For this, let ( ) ( )[ ]θ=γ ,XgEg f  for the side information constraint, 

and ( ) ( )θγ ,xg  be the adjoint (evaluated at 1) of its pathwise derivative 
(for definition, see, for example, Bickel et al. [5]). By Proposition A.5.2 in 
Bickel et al. [5], ( ) ( ) ( ).,, θ=θγ xgxg  Define the inner product (matrix) 

[ ( ) ( )] ( ) ( ) ( ) ,, 212121 dxxfxsxsXsXsEss f ′=′>=< ∫  the norm (matrix) 

>=< 11
2

1 , sss  and ( ) 12
1

2
1 : −− = ss  when 2

1s  is non-degenerate. 

Without side information, the efficient influence function for 

estimating θ  under model ( )θ⋅f  is ( ) ( ) ( ),00
1

0 θθ=θ − xlIxe fff  and the 

optimal asymptotic covariance for any regular estimator of 0θ  based on 

the model ( )θ⋅f  is [ ( ) ( )] ( ).0
1

00 θ=θ′θ −
ffff IXeXeE  Let ( )1vv∏  be the 

projection of v onto [ ],1v  the linear span of 1v  with respect to f, and ⊥
1v  

be the orthogonal complement of [ ]1v  with respect to f. With side 

information given by ( )[ ] ,0, =θXgEf  by Example 3.2.3 in Bickel et al. 

[5], the efficient influence function is 

 ( ) ( ( ) ( ) )⊥γθ∏=θ gxegxe ff 00 ,  

( ) ( ( ) ( ))gxexe ff γθ∏−θ= 00  



CONVOLUTION REPRESENTATION IN PRACTICE  127

( ) ( ) ( ) ( ) ( ) ( )xgggexe ff γγ>γθ⋅<−θ= − 2
00 ,  

( ) ( ) ( ).,, 0
1

00 θΛθ′−θ= − xggAxef  

Thus, ( ) ( ) ., 2
00 0

−θ=θ Pff gXegI  

Now, the rest proof is the same as that in Theorem 1, by taking 

( ) ( ) ., 2
00

1
0Pff gXeitgitIb θ−=θ−= −  Similarly, ( ) ( ).00 gIgI ff θ≥θ∗  

We get 

( ) [ { ( ( ) }] { ( ) }2expexplim 2
0

1
0

1 tgIRgIWitEt ffWn n θ−θ−=φ −−  

{ ( ) } { ( ) } [ { ( ( ) }]SgIWitEtgtgI ff 0
12

0
12

0
1 exp2exp2exp θ−θΩ−θ−= −−−
∗

 

( ) ( ) ( ) ( ).
0

1 ttt SgIWVZ
f θ− −φφφ=  

Now take ( ) ,0
1 SgIWU f θ−= −  and note that when ( ) ( ),θ⋅=θ⋅ ∗ff  

( ) ( ),00 gIgI ff θ=θ
∗

 and ,0=V  the proof is complete. 

Proof of Theorem 3. We use the same method as in the proof of 

Theorem 1. Let ( ) ( )( ) ( )( ).,,,,,; 0
,

0
, hgxlgxblhgbx fff θ+θ=α ⋅⋅  We used 

the index f to denote its dependence on the specified model ( )., gf θ⋅  In 

this case, as in Begun et al. [2], we have, under ,0P  

( ) ( )gLgL nnnnn ,, 0θ−θ=λ  

 ( ) ( ) ( ),1,,,2
1,,; 0

1

21
Pfif

n

i
ohbgIhgbXn +−θ−α= ∑

=

−  

where ( ) ( ).,,,;,,, 00 0 hbgXEhbgI fPf −θβ−=θ  Note When ( )gf ,0θ⋅  

( ),0 ⋅= f  we have ( ) ( ) 2
00 0

,,,;,,, Pff hbgXhbgI θα=θ  as in Begun et 

al. [2], in which they used Hellinger differential, so the notation α  there 

differs the fα  used here by a factor ,21−f  and their µα=σ 22 4 f  with 
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µ  the Lebesque measure, here we used Hadamard differential, and the 

( )hbgI f ,,,0θ  here will be their 2σ  when ( ) ( )., 00 ⋅=θ⋅ fgf  Note by (6), 

( ) ,0,,;0 =α hgbXE ff  and so for fixed ( ),,, hgb  

( ) ( ) ( ( )),,,,,0~,,,,; 0
2

1

21 hbgNhgbShgbXn f
D

if

n

i
θσ→α∑

=

−  

where ( ) ( ) .,,,;,,, 2
00

2
0Pff hbgXhbg θα=θσ  Thus, as in the proof of 

Theorem 1, we have 

( ) ( ) [ { ( ) ( ) ( ) }].2,,,,,exp 0 hbgIhgbSbWitEtt fWWn −θ−+−=φ→φ  

Since 1Cb ∈  and H∈h  are arbitrary, we first choose ∗= fhh  to 

minimize ( ).,,,0
2 hbgf θσ  By definition of ,∗fh  we have ( ) =α hgbxf ,,;  

( ( ) ( )) ( ),,, hbhxAhxAxb fffff ++−ρ ∗∗  and ( ) =α 2
0

,,; Pf hgbX  

( ) ( ) ( ) ( ),,,, 0
2222

00
PLhhbhxAhXAXb PffPfff ∈∀++−ρ ∗∗  with ”=“  

iff .∗−= fbhh  Now take ,∗−= fbhh  we get 

( ) [ { ( ) ( ) ( ) }2,,,,,exp 0
∗∗ θ−−+−=φ fffW bhbgIbhgbSbWitEt  

 [ { ( ) ( ) ( ) }.2,,,,1exp 0
2 ∗∗ θ−−+−= fff hgIbhgbSbWitE  

Now, similarly as before, take ( ),,,0
1 ∗− θ−= ff hgitIb  we have 

( ) [ { [ ( ) ( )]}] { ( ) }.2,,exp,,1,,exp 2
0

1
0

1 thgIhgShgIWitEt fffffW
∗−∗∗− θ−−θ−=φ  

Similarly as in the proof of Theorem 1, we have ( ) ( )∗∗ θ≥θ
∗∗ ffff hgIhgI ,,,, 00  

with ”=“  iff ( ) ( ).,, gfgf θ⋅=θ⋅ ∗  Let ( ) ( )∗−−
∗∗

θ=θΩ ff hgIg ,,, 0
1

0
1  

[( ( ) ( )) ( )] ( ),,,,,,,,, 0
11

0
11

00
∗−−∗−−∗∗
∗∗∗∗∗∗

θθ−θ−θ ffffffff hgIhgIhgIhgI  

take ( ) ( ),,,1,,0
1 ∗∗− −θ−=

∗∗ fff hgShgIWU  then 
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( ) [ { ( ( ) ( ))}] { ( ) }2,,exp,,1,,exp 0
12

0
1 ∗−∗∗−

∗∗∗∗
θ−−θ−=φ fffffW hgIthgShgIWitEt  

{ ( ) } ( ) ( ) ( ).2,exp 0
12 tttgt VZU φφφ=θΩ−× −  

This complete the proof. 

Proof of Theorem 4. We first generalizes the LAN condition to      
B-vaued parameter case. By the Taylor expansion using Hadamard 
differentials, we have 

( ) ( )0gLgL nnnn −=λ  

 ( )hgXln if

n

i
;0

1

21 ∑
=

−=  

( ) ( ),1,;2
1

0
1

1
Pif

n

i
ohhgXln ++ ∑

=

−  

the remainder ( )1Po  is by the definition of second order Hadamard 

differentiability. 

By (C10), ( ) ,,0,, 000 P∈∀= hhgXlE fP  so by the central limit 

theorem, ( ) ( ) ( ( )),,;,0~,: 01,01
21 hhgINhShgXlnS f

D
if

n
in →= ∑ =

−  

and by the strong law of large numbers, ( ) 0
.a.s

01
1 ,, Pif

n
i EhhgXln →∑ =

−  

( ) ( ).,;,, 00 hhgIhhgXl ff −=  Thus, we get 

( ) ( ) ( ).1,;2
1

0 Pfn ohhgIhS +−=λ  

(i) Let ( ),ˆ 0ggnW nn −=  and ( ) [ { ( )}] CYibEbY →=φ ∗∗∗ B:exp  

be the characteristic functional of a random element .B∈Y  The proof 
below is true for any inner product B>⋅⋅< ,  on B, although 0, P>⋅⋅<  is 

convenient. Let B∈∗b  be the Rize representer of ∗b  for the inner 
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product ., B>⋅⋅<  Then ( ) ( ) [ { }].,exp B><=φ=φ ∗∗
∗ bYiEbb YY  Like 

characteristic function for random variables, characteristic functional 
and distribution of random element uniquely determine each other in B, 
and two random elements are independent iff the characteristic 
functional of their summation is the product of those of each other. For 
random element, weak convergence implies convergence of corresponding 
characteristic functionals, but the convergence of characteristic 
functionals of a sequence of random elements to some limit one is not 
enough for the weak convergence of the sequence to the corresponding 
weak limit, it needs weakly relatively compactness of the sequence { }nW  

(see Theorem 4.3.1, p.224, Vakhania et al. [30]), just like weak 
convergence of random processes. However, the weak convergence of nW  

in ( )Tl∞  is already given in its definition of regularity, so we only need to 

show ( ) ( ) ( ) ( )ssss VUZWn n φφφ=φlim  for all .B∈s  

By regularity of nĝ  and expression of ,nλ  we have 

( ) ( )[ { }] ( )[ { }]BB >−<=><=φ ⋅⋅ hWsiEWsiEs ngfngfW nn ,exp,exp0  

 ( )[ { ( ) ( )}] ( )sgLgLhWsiE Wnnnngf φ→−+>−<= ⋅ 0,exp0 B  

 [ { ( ) ( )}].,;2
1,exp 0 hhgIhShWsiE f−+>−<= B  (A.1) 

Since ( )⋅⋅,;0gI f  is positive definite by (C10) and symmetric bi-linear 

by definition, so ( ) RgI f →×⋅⋅ BB:,,0  is a positive definite bi-linear 

form, thus, there is a symmetric linear operator (covariance operator) 

,: ∗→ BBfG  such that ( ) ( ) ( ) B∈∀= 2121210 ,,, hhhhGhhgI ff  (see, 

for example, p.145, Vakhania et al. [30]) . Also, fG  has an inverse 1−
fG  

since ( )⋅⋅,:0gI f  is positive definite. Without confusion, denote fG  as 

the Rize representer of fG  for the inner product ,, B>⋅⋅<  then 
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( ) .,,,, 2121210 BB >=<>=< hGhhhGhhgI fff  Also, fG  has the square-

root decomposition 2121
fff GGG =  for some linear operator 21

fG       

(c.f. Lemma 1.1 and its proof, p.149, Vakhania et al. [30]). Thus 

B>< 21, hGh f  .,,, 212
21

1
21 BB ∈∀><= hhhGhG ff  

Since the right hand side in (A.1) is independent of h by definition of 

regularity, we can choose h as we want. Take .1siGh f
−−=  Then 

( ) ( ) ( ) ,,1 11 ><−=−= −− sSGisSiGhS ff  where >⋅⋅< ,  is the inner product 

in Euclidean space, given by .,,, Rbaabba ∈∀>=<  Note [ ] ( )⋅− SGf
1  is 

linear, it has an adjoint ( ) ,:1 B→− RSGf
τ  so that ( ) >=< − sSGf

1,1  

( ) .1, 1
B>< − τSGs f  Also, ( ) =−><−=><− − hhgIsGshsi ff ,,,,, 0

1
BB  

,,,,, 11111
BBBB >=<>=<>=<><− −−−−− sGssGGGssGGsGhGh ffffffff  

and so 

( ) ( )hhgIhShWsi f ,;2
1, 0−+>−< B  

( ) .,2
11, 11

BB ><−>−<= −− sGsSGWsi ff
τ  

Now, we have 

( ) [ { ( ) }] { }.,2
1exp1,exp 11

BB ><−>−<=φ −− sGsSGWsiEs ffW
τ  

When ( ) ( ) .,,;,;,, 0000 B∈∀>∈∀∈/ hhhgIhhgIff ffFF  Write 

( ) ( ) [ ( ) ( )] ( ) −=−−= hhgIhhgIhhgIhhgIhhgI fffff ,;:,;,;,;,; 00000  

( ).,;0 hhgIδ  Let 1−
f

G  and 1−
δG  be the counter parts of ,1−

fG  corresponding 

to ( )hhgI f ,;0  and ( ),,,0 hhgIδ  then 1−
δG  is positive definite            
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and .,,,, 111 BBB ∈∀><+>=<>< −
δ

−− ssGssGssGs ff
 So, we get 

( ) [ { ( ) }] { } { }.,2
1exp,2

1exp1,exp 111
BBB ><−><−>−<=φ −

δ
−− sGssGsSGWsiEs
ffW

τ  

On the right hand side above, the second factor is the characteristic 
functional ( )sZφ  of the Gaussian element Z with (Pettis) mean zero and 

covariance functional ( ) ,,:,; 1
0

1
B>=< −− sGsssgI

ff  while the first factor 

is the characteristic functional ( )sUφ  of ( ) ,1: 1 τSGWU f
−−=  the third is 

that of the Gaussian element with mean zero and covariance functional 

,, 1
B>< −

δ sGs  and the factorization implies ,, VU  and Z are independent. 

(ii) In this case, ( ) ( ) [ ( ) fffff lhgXlEhhgIhhgI ,,;,; 000 00 ==  

( )].,0 hgX  We use van der Vaart’s differentiability to find the 

expression for ( ).,,0
1

0
⋅⋅− gI f  Let ( ) ggv =/  be the parameter of interest, it 

has Hadamard differential, in the direction h, is ( ) =→=/ BB:; hhgv  

( ).0
2 PL  Let ( ) ( )0

2:; PLgv =→⋅/ BBτ  be its adjoint, then for fixed ,g  

( ) ( ) ( ) ( ) ( ) .,,,;,,;
0

2
0

2
0

2 B∈∀>=<>/=<>/< bhbhbgvhbhgv PLPLPL
τ  Thus, 

( ) .,; B∈∀=/ bbbgvτ  For each fixed ,∗∗ ∈ Bb  we have [ ( )] =/∗ hgvb ;  

( ) ( ) ( ) ( ) ( ) ,,;,,;1,;
0

2
0

2 B∈∀>/=<>/>=</< ∗∗
∗ hbgvhbhgvhgvb PLPL

τ  

where ∗b  is the Rize representer of ∗b  with respect to the inner product 

( ).,
0

2 PL>⋅⋅<  In this way, we also identify ( )⋅/ ;gvτ  as a linear operator: 

,BB →∗  by defining ( ) ( ).;:; ∗
∗ /=/ bgvbgv ττ  Let ( ) ( ) B→⋅ 0

2
0 :, PLhglf

τ  

be the adjoint of ( ),,0 hglf ⋅  which is determined by ( ) 0,,0 Pf bhgl >⋅<  

( ) .,,,, 00 B∈∀>⋅=< bhbglh Pf
τ  Since by assumption, we have 

( ( )) ( ( )),,, 0 ⋅=⋅/= gxlRgvR f
ττB  and note pathwise differential is a type 
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of Hadamard differential, by Theorem 5.4.1 (Bickel et al. [5], p.202), the 

efficient influence function ( ) BB →⋅ ∗:,~
0gxI  for estimating 0gb∗  is 

the solution of the equation 

( ( )) ( ) ,,;,~, 000
∗∗

∗∗
∗ ∈∀=/= BbbbgvbgxIgxlf

ττ  

and the inverse information covariance functional ( ) RgI f →×⋅⋅ ∗∗− BB:;~
0

1  

for g is 

( ) [ ( ) ( )].,~,~,, 2010210
1

0
∗∗∗∗− = bgXIbgXIEbbgI Pf  

Thus, the optimal achievable lower bound of the asymptotic variance for 

estimating 0gb∗  based on the model ( )gf ⋅  is ( ).,,0
1 ∗∗− bbgI f  

g 


