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Abstract

The convolution theorem (Hajek [8]) characterizes the weak limit of any regular
estimator as a convolution of two independent components. One is an optimal
achievable part and another is a noise. Therefore, the optimal estimator is one
without the noise part in its weak limit, which is a deeper characterization than
the Cramer-Rao bound. However, this result is derived under the assumption
that the specified model is the true one generating the data. In practice, any
subjectively specified model is more or less deviated from the true one. The
convolution representation (and the Cramer-Rao bound) should be modified to
reflect this fact. Here, we study such modifications for the estimation of
parameters under several cases: Euclidean parameter, Euclidean parameter with
side information; Euclidean parameter with infinite-dimensional nuisance
parameter; and the case of infinite-dimensional parameter. In each case, we
decompose the weak limit of a regular estimator into three independent
components, with one achievable optimal part, and two noise parts. When the
specified model is indeed the true one, it reduces to existing convolution

representation of two components.
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1. Introduction

Let fy(-) be the true density function generating the observed data, it

may not necessarily be a member from some parametric family. Define

the parameter 0y = G(f;) for some known functional G(-). Since fy(-) is
unknown, in practice, a parametric model f(-|9) from some known

parametric family is often specified as an approximate model to analyze
the data.

If it happens that the model f({6y) coincides with the true model

fo(-) at the parameter 05, then it is well-known that the maximum

likelihood estimate (MLE) én of 6y will almost surely (a.s.) converge to
arg sup Jfo (x)log f(x|6)dx = arg sup ~|Af(x|60 )log f(x|6)dx,
0O 0O

which is achieved by 6, the true parameter.

On the other hand, if the model f(-6) does not coincide with f(-) for
some 0, it is known (Huber [10]; Pfanzagl [22]) that the MLE from the

parametric model will a.s. converge to the pseudo-true parameter set 0y,
©®; = arg sup Jfo(x) log f(x]0)dx.
0c®

The points in ©; may not necessarily correspond to the “true”

parameter(s) generating the data. Similarly, in the Bayesian setting, if
the wrong likelihood model is specified, the posterior will asymptotically

concentrate on 0, (Berk [4]).

However, estimators of 6, based on f(-0) can still be consistent even
if f({06g) # fo(-), for example, if ({6) and fy(-) have the same mode. We

are only interested in this case, as comparing inconsistent estimators is

meaningless. Let I(0,) be the Fisher information (matrix) and B stand

for convergence in distribution. Assume an estimate 6,, be consistent and
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asymptotically normal, ie., Vn(6, — GO)EN(O, Q). The Cramer-Rao

theorem asserts that Q > I"1(0,), here “>” is in the semi-definite

matrix sense, and any estimator that achieve this lower bound is an
efficient estimator. Under general conditions, the MLE and Bayes
estimate are efficient estimators. The convolution theorem (Héajek [8]),

based on the assumption that f(|6) is the correct model for the observed
data, states that for any regular estimator 7}, with weak limit W, there

are random variables Z and V such that
W=2zeV, Z~N(©0 1)),

where Z @ V means independent summation of Z and V. Here, we see
that Z is the optimal weak limit and V is undesirable noise. Inagaki [12]
discovered a similar result as the above, in the same year, under

considerably stronger conditions.

The Cramer-Rao theorem gives the achievable lower bound I _1(90)

of the asymptotic variance of any asymptotically unbiased estimators.
The convolution theorem further characterizes the achievable optimal

weak limit of a regular estimator: It is the normal random variable Z
with mean zero and variance I _1(60 ). An estimator is efficient iff its

weak limit W = Z or equivalently V = 0. The convolution theorem has
had profound impact and generated considerable interest in the
statistical field, and different versions of it (van der Vaart [32]; Pfanzagl
[23]) and generalizations to infinite-dimensional parameters have been
proposed (for example, Millar [21]; Schick and Susarla [27]; LeCam [19];
Beran [3]; Janssen and Ostrovski [13]), and in the Bayesian framework
(van den Heuvel and Klassen [31]; Sen [28]). But to our knowledge, all

these results are derived under the assumption that the model f(|0g) is

the true one generating the data. This assumption is unlikely to be the
case in practice, as any subjectively specified parametric model is more or
less biased from the true one. Thus, these classical results should to be
modified to reflect the model uncertainty, which is the motivation of this

study.
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We consider several cases, first the inference of Euclidean
parameter(s), without and with side information on the specified model,
then with nuisance parameter(s), and lastly the case of infinite-
dimensional parameter. We show that generally in each case, the
convolution representation has three independent components, which
reduce to two components only if the assumed model is the true one
generating the data. Thus, any parameter estimates based on the
postulated model has bigger variation than that based on the existing
result, and the modified Cramer-Rao lower bound is no smaller than the
inverse Fisher information; it equals the latter only if the model happens

to be the correct one.
2. Results

We first consider the case of estimation of Euclidean parameter(s) in
the specified model, then the case with side information, with nuisance
parameter, and the case of infinite-dimensional parameter. Let

Xi, ..., X,, X be iid. with fy(-), which is unknown. In practice, the

investigator often subjectively specifies it by a parametric model f({6) as
a member from some known parametric family, with 0 = (01, ..., 04 )’ a
d-dimensional parameter. Let ;(x|0) = log f(x|0), lf(x|9) = (0/00)l¢(x|6),
i7(0) = (623000 )y (1]0), L, (6) = 3 1(X,(0), L, (0) = Y7 ip(X,]0),
and L, (0) = Z:L:llf(XJO) Let

F = {f;j({6) : f;({6) be a density for each 6, and f;(-{0y) = fo(-), j € J}

be the class of all parametric densities, which pass through f,(-) at 0y. It
is the class of all possible ‘true’ models with parameter 6 for the

observed data. Note that f(|0) is a member of F only if it is a correctly

specified parametric model of the data. Let 1;(0) = - Ej, [lf (X]0)] and
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f*(le) = arg fj?‘le%)é}- Ifj(eo)

be the ‘most favorable’ true model for the observed data, which is

unknown. The max here is in the sense of matrix positive definiteness.
In our study, we assume the following conditions:

(C1) 14(16) is twice differentiable with respect to 6.

(C2) | folw)iy(x]0g )dx = 0.
(C3) I¢(8) < o is non-singular in a neighbourhood of 6.

For the parametric model f(|6), we will see that 1171(90) is the
effective information bound, instead of the inverse Fisher information
I"(0g), the classical information bound, where I(6) = — Ef(,‘e)['l'f(X|9)].
It is known that I7'(8y) > I71(8y) with “="iff f({80) = fo(-) (Serfling

[29], p.257).

When the estimator 6, is the MLE of 8, based on f({),

én -0 = _[Ln(en )]_an(eO):

where 0,, is an intermediate point between én and 6. So under (C1)

and (C3) (and some further conditions on L,(-)),

n7 L (00)™ [ follip(xl6g)dx,  —n7 Ly (0,) 1;(6).

A

thus 6,, is asymptotically unbiased if and only if (C2) holds. Thus, (C2)
seems necessary for many estimators based on f(6) to be asymptotically

unbiased. Note in this case,
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q@):-j@@y%%%dx+jmuﬂgqmg@mym

= E;, (ir(X]0)if(X]6)),

which differs from the classical result 1(6) = —Ey(o)(I;(X]0)) = E(o)
(i (X]0)i(X]0)).

From now on, let 6, =0y + n 2 for some b e C, the complex

plane. A rate n'/? consistent estimator T, =T,(X;, ..., X,,) is said to

be regular, if under f(40,), W, = Vn(T, - en)BW for some random
variable W, and the result does not depend on the sequence {0, }. Let
Z ®V denote the summation of two independent random variables Z
and V;and I(6) be the Fisher information for f({6) at 6. The
convolution theorem (Hajek [8]), based on the assumption that f({6) is

the correct model for the observed data, states that for any regular

estimator 7;, with weak limit W, there is a random variable V such that

W=2®V, Z~ N, I6p)).

The Cramer-Rao theorem gives the lower bound of the asymptotic
variance of any asymptotically unbiased estimators. The convolution
theorem further characterizes the weak limit of an asymptotically
optimal estimator: It is a normal random variable with mean zero and
variance I1(8y). An estimator is efficient iff V = 0. Since any
subjectively specified model is more or less deviated from the true one,
below we modify this convolution result under the possibly wrong model

f(0) specification. In some cases, the convergence rate of Euclidean or

infinite-dimensional parameters can be different from Vn. For example,

for distributions with singularity of order o, the convergence rate of

Euclidean parameter in the model is r, = pt/0ra) 1 < g < 1(a = 0).
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In this case, the local parameter is defined as 6, = 6y + 7, 5, and the

local likelihood ratio is often asymptotically non-normal, see Ibragimov
and Has’'minskii [11]. For Euclidean parameter takes only finite number

of possible values, the convergence rate r, is exponential (for example,
Hammersley [9]; Robson [26]). Convergence rate 1, of infinite-
dimensional parameters is often slower than vn. In these cases, the
weak limit of 7,(0,, —0y) is often non-Gaussian, and the how to find
specific form of the optimal weak limit in convolution representation, if

exists, seems still open.

We first give a modification of the existing convolution theorem
under the specified model (not necessarily the true one), for the case of

Euclidean parameter.
Theorem 1. Assume (C1)-(C3). Then for any rate vn consistent
regular estimator T,(Xy, ..., X,,) based on the model f({0), with weak

limit W = lim,, Vn(T, - 0,,), we have

W=ZeVeaeU, Z~N(0, 1]2*1(60)), V ~ N(0,97%(6y)),

Q7(0g) = Igl(eo)[(ff*(eo)— If(eo))_l - Iﬁl(eo)]_lfﬁl(eo)-

Remark 1. The noise U is due to the fact that the estimator 7}, is
not optimal based on the model f(|6), thus for a regular estimator of 6
based on the given model, its optimal achievable weak limit is Z ® V,

and the corresponding modified Cramer-Rao lower bound on asymptotic

variance of any asymptotically unbiased estimator is 1;*1(90 )+ Q71 (0g)
= 1;1(90) > I1(0g), with “=" iff f(]0g) = fo(). Super-efficiency may
happen, under some conditions, at some 6, in that there are some

estimator, whose asymptotic variance can be smaller than I _1(9) at

these 0, but all such points at most constitute a Lebesque null set
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(LeCam [15]). The noise U is due to the deviation of model f({6y) to the
optimal true data generating model f£.(-). V =0 iff f({6) = £.(0), then

the optimal weak limit is Z, and we get the original convolution theorem.

Remark 2. When vn(7T, - 0,,) is asymptotically linear, the noise U
can be further characterized. In this case, by the general central limit

theorem (see Araujo and Giné [1]), the weak limit of vn (T, - 6, ) must

be of the form N(a, 6%)® & ® Pios(u), where & is some point mass, and

Pois(u) is a generalized Poisson distribution corresponding to a Lévy

measure p. Thus, we must have o2 > I;1(90)+ Q71(6p), and let
o2 =o? - I;l(eo)— 071(6y), we have U = N(0, 62 ) ® 5 @ Pios(u).

Droste and Wefelmeyer [7] derived Hajek’s convolution
representation with technically weaker conditions than regularity. A
further almost everywhere version of this representation without the
regularity condition by the works of a number of authors, was stated in
Beran ([3], Theorem 2.3). We conjecture that Theorem 1 and the results
below are still valid under these weaker conditions, but we will not
persue them here for succinctness. LeCam [17] and Janssen and
Ostrovski [13] generalized the convolution theorem to the case in which
the optimal weak limit need not be Gaussian, and in the infinite-
dimensional parameter space. Jeganathan [14] studied the case the

optimal weak limit is mixed normal.

Let ©; be as given in the Introduction. In the case ®; = {0,} has a

single point, White [34] showed that

Jn (b, - 0,)% N(0, C(0.)),

where C(0) = A7 (0)B(6)A™'(0), A(0) = E (I;(X]0)), B(6) = Ey, (I;(X]0)
l}(X|9)) Thus, when f({6) ¢ 7, the MLE based on it may not be

efficient in the sense of U = 0 in Theorem 1.
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With side information. In some cases, there is an additional
information about the parameter, often be summarized by
Ef[g(X, 0p)] =0 for some known function g, or vector of functions.

Incorporating such information often leads to improved accuracy of
inference (for example, Qin and Lawless [25]; Xu and Wang [35]). Let
f({6, g) be the density with the side information incorporated, and

I(/6, g) be the corresponding log-likelihood, though generally the forms

may not be known. We need the following conditions:
(C4) A = E/[g(X, 0)g'(X, 0y)] < o is invertible, and A(6y, g) :=
B i(X]00 )g(X, 6)] < .

(C5) Ep [f(X]09, 2)/(X|00, £)] = 0.

Theorem 2. Under (C1)-(C5). Then for any rate Jn  consistent
regular estimator T,(Xi, ..., X,,) based on the model f(0) and side
information E([g(X, 6¢)] = 0, with weak limit W = lim,, Jn(T, -0,),

we have

W=zeVeU, Z~N(, I;'(0g)), V~NO Q" (0g)),

where Q™ (09|g) = 11 (00]8) (11, (80l) ~ 17(60|£)) ™ ~ ;1 (00l&)] " 17,
(80): 17(80|8) = Ep,[e/(X[60, g)e'(X]00, &)1, e/ (2160, g) =1, (80)i(X]00 ) -
AI(GO’ g)A_lg(x’ eO )

The noise U is due to the fact that the estimator 7}, is not optimal
based on the model f(-0), thus for a regular estimator of 6, based on the
given model, its optimal achievable weak limit is Z ®V, and the
corresponding modified Cramer-Rao lower bound on asymptotic variance

of any asymptotically unbiased estimator is I;l(eo )+ Q71 (0g) = I,?l(eo )

> I"40y), with “=” iff f({60) = fo(). The noise V is due to the
deviation of model f(|0g) from the optimal true data generating model

fi(-). V =0 iff f(-|0) = fi({6), in which case the optimal weak limit is Z.
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With nuisance parameters. Now, we consider the case there is a
nuisance parameter g in the model f({6, g). We assume g is in a Banach
space B, which include the Euclidean parameter as special case. To
simplify presentation, we assume g has one component, the result for
multi-components case is parallel. We need the score in this case, let
1¢(6, g) = log f(x]6, g). There are several commonly used derivatives
including Gateaux, Hadamard (compactly), pathwise, Hellinger, and
Fréchet differentials. Often, Gateaux differentiability is too weak (even
discontinuous functional can be Gateaux differentiable), Fréchet
differential is too strong (many commonly used statistical functionals do
not have Fréchet differentiability), and Hadamard differential is stronger
than Gateaux and weaker than Fréchet and is considered appropriate to
use in most statistical problems. The Hellinger differential is a special
form of the Fréchet differential, pathwise differential is a special form of
Hadamard differential and is often used for semi-and-nonparametric
models. When all these differentials exist, they are all equal (except that
the Hellinger differential and the score only differ by a factor of f 1/2 /2),
so their differences are only the existences of these differentials. The
Hellinger differential on fl/ 2 is used in many articles, instead of
Hadamard differential on [(x|6, g), to deal with differentials for B-valued
parameters, it has the advantage that the referred quantities are
automatically in L2(PO) with norm 1. But for higher order differentials,
this advantage is not obvious. In this article, we use the Hadamard
differential for B-valued parameters, and assume the existence for all

referred quantities. Let P, be the probability distribution for the
‘true’ model fy; Lg(Py) be the Hilbert space of all functions

h  with ||h|ﬁJO = f h%(t)Py(dt) < o and define the inner product
<h, g >p= [ ht)gOPy(dt)(h, g € Ly(Py)). Let <h, g > = [ h(t)g(t)dt
and [ = < b, h >, Vh, g < B. For fixed x and 0 and g, let [V)(x]0, g)

be the ordinary partial derivative of I;(x|6, g) with respect to its first
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component 0, and we adopt the following version of definition of the
Hadamard differential (Bickel et al. [5], p.454) 1¢)({0, g h) : B — L*(Py)

of 1;(x[6, g) with respect to g in the direction % € B: for all compact
subset S of B,

I (x]0, g+ <)~ 1y (x]0, &)~ 1) (|6, g; ch)

€

— 0, as ¢ - 0 uniformlyin h € S.

We can define the second order differentials ll(c'")(x|9, g), ll({")(x|9, g; h) as
the Hadamard differential on li(g’)(x|9, g) with respect to g, and
ll(;")(x|6, g; hy, hy) be that of l}(;')(x|6, g, hy) with respect to g in the
direction hg, the latter is a bi-linear operator: B x B — L?(P,). When
these second order differentials exist, we say [;({6, g) is twice
differentiable.

For fixed 0 and g, l](x')(~|9, g, h): B > L[?(Py) is a linear operator.
Now, let f,,(-) = f(|6;, g, ) be the local model, with 6,, = 8y + n2b and
g,()=g()+ n_l/zh(), for some g, h € H. Let

F = {f;(|6, g) : f;({6, g) be a density for each 6 € R, g € H,
and f;({6g, &) = fy(), for some g, j € J} be the class of all parametric
densities pass through fy() at (0g, g). To simplify notation, let
pr()=1(xl00, 8), Ap(x. h) = 1) (x]00, g, 1), and ap(x;b, g,h)=bpy(x)

+ Af(x, h). Note for fixed x, Af(x,-): B — I*(P,) is a linear operator.
By the projection theorem in Luenberger ([20], p.59) and the assumption
I*(Py) c B, thereis an hf e I*(Py) such that

pr() = Ap(,hf) Lp Af(Lh), Vh e LX(R).
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Let (Af)" : I*(Py) > B be the adjoint of Ay, it is determined by
<h, (A;)'g>=<Ah, g >p,VheB, Vg e’(P)). When (A7) A; is
invertible, h = ((Af) As )71(Af )'ps. Let

Br(x; 6, b, g, h) = b1 (xlo, @)+ 2610 (x]0, g5 h) + 1) (x]0, &; h, h),

I;(0¢, g, hf) = — Ep B(X; 09, 1, g, - hf),
and

f*(|97 g) = arg ma}i NIfj(e()’ 8, h;} )

Assume the following conditions:

(C6) I({6, g) is twice differentiable with respect to (6, g).
©7) [ fo@)$) (2100, g)dx = [ fo(x)l)(x]6, g5 h)dx =0, Vh < B.
(C8) (6, g, hf) < o is non-singular in a neighbourhood of (8, g).

Theorem 3. Assume (C6)-(C8) and that L2(P0) c B. Then for any

rate \n consistent regular estimator T, (X, ..., X,) of 0y based on the

model f(|0, g) (g € B is a nuisance parameter), with weak limit

W = lim, vn(T, -0, ), we have
W=zeVeU, Z~N(@ I;'(8,sg hf)), V~N(O Q6 g)),
Q_l(eo’g):If;].(OOagahZ )[(If*(e()ag’h;*)_If(eOag’h;))71_Iﬁl(e()sg’h;* )]71

x I:1(60, g, h,)-

As in the cases before, the noise U is due to the fact that the estimator

T, is not optimal based on the model f(|6, g), thus for a regular
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estimator of 6y based on the given model, its achievable optimal weak
limit is Z @ V, and the corresponding modified Cramer-Rao lower bound

on  asymptotic variance of any asymptotically unbiased estimator, in the

presence of nuisance parameter g € H, is 1;*1(90, g, h;* )+ Q_l(eo, g)

= I7'(0, 8 hf) = T7N(0g, g, k") = Ef(jo,,g)0F(X; 1, g = hf ), with “=
iff f({6¢, g) = fo(). The noise V is due to the deviation of model
f({69, &) to the optimal true data generating model f£.({6, g). V = 0 iff
f(16, g) = £.({6, g), and then we get the result in Begun et al. [2].

Infinite dimensional parameter. Now, we consider estimation of g in
the model f(|g), g € B. For fixed g, let if(~|g; h): B - L*(P,) be the

Hadamard differential of /¢({g) in the direction & € B. For conciseness,

we concentrate on the case g has only one component. If g = (g, ..., g}, )’
with each g; e B, if(x|g, h) will be B* — B”, and the results will be
parallel, but the presentation and notations will be more involved. In

that case h = (hy,..., h;, ), and l}(x|g, h)=(if(x|g1,h1),...,if(x|gk,hk ).

Let B* be the dual space of B, and Vb € B* and Vb € B, denote
b*(b) the value of b* at b. When there is an inner product < -,- >g on B,
by the Rize representation, corresponds to this inner product, there is a
unique element b, € B such that b*(b) =< b, b, >pg for all b € B. In fact,
let < a, ¢ >= ac be the inner product in Euclidean space, then b*(b) =
<b*(b),1>=<b,b""1 >, Ab € B, thus, b, =b""1, the adjoint of b"
evaluate at 1. Note in some texts, such as in Bickel et al. ([5], Chapter 5),

b* and b, are denote by the same notation for simplicity.
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For fixed g, let l';(-|go, b): B —> LZ(PO) be the adjoint operator of

lf(x| £0,"), which is determined by
<if(|go, h), b >p=<h, [f(|g9, b) >p,, VheL*(Py), VbeB.

For fixed x and (gg, h), the second order Hadamard differential
lf(x| 80, h, hy) of I;(x|gp) in the direction 7; is defined analogously. It
is the Hadamard differential of lf(x| go; h) with respect to gy in the

direction A;.

For h e B, If(golh, h) = EPO[Zf(XlgO; h, h)] is the information of
go in the model f({go) at direction h, and I/(g|,-): BxB > R is a

covariance functional. Just as a covariance (matrix) uniquely determines
a zero mean Gaussian random variable in Euclidean space, the
covariance functional uniquely determines a zero mean (in the Pettis
sense) tight Gaussian random element in B (see, for example, Vakhania
et al. [30]). As there is no Lebesque measure in general Banach space,
and so no density function with respect to such measure, the distribution

of random element Z in B is often characterized by the real random
variable b*Z for each b* € B*. For Gaussian random element Z with
mean zero and covariance functional C(h, h), the distribution of b*Z
is the Gaussian random variable with mean zero and variance
C(b", b*) := C(b,1, b,1), with b, the Rize representer of b* with respect
to the inner product < -,- >p .
Unlike the Euclidean case, many parameters in B are not rate-Vn

estimable, but still some of them are. Let 2) stands for weak

convergence in R*, and 2 for that in I°(T) = 12() : ||y = supier|g(®)]

<o}, with respect to the metric |-|,. Note weak limit of random
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elements in B is characterized via that of any linear functional of the

elements. For g € B is not rate- nl/? estimable, often its rate is slower
than nl/ 2, the weak limit is often non-Gaussian, and convolution

representation for this case have not been seen. Let g, = g + n2n for

h € B. Since there is no Borel measure on B, distributions of random
element Vin B is characterized by that of the real random variables 5"V

for b* € B*. We define an estimator g, of g to be regular, if under

f(lgn )>

A D
\/;(gn _gn)jv’

for some tight random element V € B, which does not depend on the

sequence {g, }; and g, to be weakly regular (Bickel et al. [5], p.181), if
vb* € BY,
Vnb" (8, - 80) D0V
Let

Fo=1fj({g):f;({g) be a density for each g H, and f;({g¢)=fo(),jeJ}

be the class of all parametric densities pass through fy(-) at gg.
Assume the following conditions:
(C9) I¢({g) is twice Hadamard differentiable with respect to g.
(C10) jfo(x)z'f(x|g0; h)dx = 0, Yh < B.
(C11) I4(g, h, ) is positive definite.

For infinite-dimensional parameters, the convergence rates of their
estimators are often slower than vn and the weak limits are often non-

Gaussian, a natural (and difficult) question is whether and under what

conditions the convoluiton theorem holds for the general case? When the
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convergence rate is not N , the problem is much harder, as the LAN
property no longer holds with such rates. However, a number of papers
have tackled this question, such as in Millar [21] and LeCam [19]. These
authors considered very general parameter spaces, established
convolution results for estimators regardness of their convergence rates
or forms of their weak limits. But these results are mostly of the
existence type, not the specific type. Also, it is unclear whether one of the
two components in their convolution representation is optimally
achievable. For example, given an infinite-dimensional parameter and/or
the corresponding likelihood model, although the optimal convergence
rate for estimators of this parameter can be determined in principle
(LeCam [18]; Birgé [6]), but it is still unknown, if there is an optimal
weak limit of its estimators, and what is its specific form, if it exists.
Potzelberger et al. [24] gave examples in which the infinite-dimensional
version of the convolution theorem does not hold in general abstract
space, but does hold under some regularity conditions, the results are of
existence type. Janssen and Ostrovski [13] gave more detailed account of
the optimal weak limit. Their Theorem 2.3 gives a convolution result for

arbitrary convergence rate a,, for linear functions of infinite-

dimensional parameter and their estimate, with the assumption that the
two involed estimators are asymptotically joint Gaussian. They gave the
optimal weak limit as the minimal variance random element defined in
their condition (a), p.7, but how to find this random element is still not
clear. Also, the joint asymptotic Gaussian assumption can only be
satisfied for a few parameters in the infinite-dimensional spaces, and in

these cases often a, = Vn. Their Theorems 3.1 and 4.1 established

convolution results for infinite-dimensional parameters in abstract

spaces, but again the results are of existence type.

Convolution theorem and information bound for rate +n -estimable
parameters of the form v(P):P — B, for some known functional v(-) and

a family P of distributions, can be found in BKRW [5] and van der Vaart

and Wellner [33]. There the results are in terms of the Hadamard
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differential of v. Below, we only consider rate Vn -estimable parameter
g € B, which is implemented in the likelihood model, not in the form
g = v(P) for some known v(-), and we do not assume the model to be

true.

Theorem 4. Assume (C9)-(C11), and that g, is a regular estimator of

g with weak limit W.

@ If f({g) ¢ Fo, then

Ja(g, —g0)2W=zZoU@®YV,
where Z is the Gaussian element with zero mean and covariance
0

functional I;Ol(go, h, h) =< h, G;OIh >p, ), f° e Fo, G;l is the inverse of

the linear operator Gfo : B > B", which is determined by Ifo (hy, hy) =

<hy, G hy >p), Vhy, hg € B, and U,V € B are random elements

f()
independent of Z.

Gi) If f(|g)e Fy, let l';(-|g0, h) be the adjoint of I¢({gg, ). If

f(|g) e Fo and the range R(i;(x|g0, ))=B= L2(P0), then

Vn(g, -g0)2W=2z0U,

where Z is the Gaussian element with zero mean and covariance
functional T:' (g9, ), I; (g0, b1, b3) = Ep [1(X|20, b1 )T(X]20, b3)],

and for fixed x, T(x|g0, b*) = T(x|g0, b, ) is the solution of the equation
I7(x|g0, T(x|g0, b)) = b, VbeB.

Let W, (b*)=vnb*(4, -g0), it is a random process indexed by

b* €B". Let [|b*|g+ = suthH:LheB|b*h|, and the distance d(,-) in B* as
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d(by, b3) = b —b3|g*. Using Theorem 1 (i), under suitable compactness

conditions (see, for example, van der Vaart and Wellner [33]) on B*, we

can have Wn():D> W) =Z()®U() in I*(B"), with Z(-) the Gaussian

. E3 . * . .
random element indexed on B", i.e., B" is a Gaussian Donsker class for
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Appendix

Proof of Theorem 1. Let ¢y(t)= Efo)lexplitY}] be the

characteristic function of a random variable Y under model f({6). We are

to show lim, oy (£) = oy (t)oy ()0 () with V ~ N(0, Q7'(8y)) and for

some U. In fact, by (C2) and (C3), we have the following modified version

of locally asymptotic normality (LeCam [16]) of the likelihood ratio:

Ap = Ln(en)_ Ln(eO) =bS, - bz]f(eO )/2 + OP(l)’

where S, = n V2Y" ir(X;]00) 53 S ~ N(0, I;(0y)), with I;1(6,) =

B [1(X]00)i'(X]69)]. When £(10) = £.(10). I7,1(80) = I7(8g) = I£,(8)).

Note

Ip(0g) =I5 (00)—[17(00)—Ip(09)]:=17(0¢)—I5(0¢).



CONVOLUTION REPRESENTATION IN PRACTICE 125
In the above, when f({6)¢ F, it is known that I (6g)> I;(6)
(Serfling [29], p.257); and by definition of f.(|6), when f(|8) e F, we
still have Iy (6g) > I7(6g), thus I5(6¢) > 0.

By the formula (A-BD'C)! = A1+ A 'B(D-cA'B)tca™,
we have I7'(9))= 117*1(90)+ 1};*1(90)(]51(90)_ 1;*1(90))71]/;1(90) =
1;1(90 )+ Q71(0,). Here Q(6,) is positive definite, hence a covariance
matrix.

By assumption of regularity,
ow, (¢) = Ef(jo,)lexplitW, }] = Ef( o, )lexplit(W, - b)}]
= Ef(jo,)lexplit(W, —b) + %, }] > E[exp{it(W, — b) + bS - b>I1(6,)/2}],

where the last step above is by the same argument as in Begun et al. [2].
Below for simple of exposition, we assume 0 is 1-dimensional, the proof

is similar for multivariate 6. Since b e C 1is arbitrary, take

b=-itlI'(8y), we get
it(W - b) + bS - b*1 (09 )/2 = it(W - I:1(09)S) - I7'(09)t* /2,
thus,
lim gy, (t) = E[exp{it(W - I (89)S}]exp{~I7" (6, )2* /2}
= exp{-I" (8 )t% /2} exp{- Q"1 (0 )t* /2}E[explit(W - I71(8)S}]

= 4208y Oy q, 150

Now take U = W—I,Tl(eo)S, and note that when f({6) = £.(160),
I5(6g) = I, (8p), and V = 0, the proof is complete.
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Proof of Theorem 2. Let f(|6, g) be the density with the side
information in g incorporated, [(x|6, g) be its log-likelihood, and
Ir(8lg) = - Epo'l.(X|90, g) be the corresponding information for 6y. By
(C6), I7(09|g) = Ep [1;(X]0g, )i} (X]0y, g)]. Define L, (6|g) accordingly.

Now, the local likelihood ratio has the asymptotic form

kn = Ln(enlg) - Ln(90|g) = bSn - bzIf(eolg)/Z + OP(I),

_ : D
where S, =n"/2Y" i£(X;]00, )5S ~ N(0, I1(8g|2)). Here I(0o|g)
generally has an unknown form as is f(46(, g), we need to evaluate it in

terms of I¢(6y) and functional(s) of g.

For this, let y(g) = E¢[g(X, 0)] for the side information constraint,
and y(g)(x, 0) be the adjoint (evaluated at 1) of its pathwise derivative

(for definition, see, for example, Bickel et al. [5]). By Proposition A.5.2 in
Bickel et al. [5], 7(g)(x, 0) = g(x, 0). Define the inner product (matrix)

< 81, 89 >= E¢[5(X)sh(X)] = jsl (x)sh(x)f(x)dx, the norm (matrix)
Isy|? =< s1, 81 > and [ls; |2 := (|s1|*)™" when ||s;|* is non-degenerate.
Without side information, the efficient influence function for
estimating 6 under model f({0) is e/(x|6y) = Ifl(GO )if(x|60), and the
optimal asymptotic covariance for any regular estimator of 6y based on
the model f({6) is E[es(X]0g)es(X|0¢)] = 1,71(90). Let TI(v|v;) be the

projection of v onto [v;], the linear span of v; with respect to f, and vi
be the orthogonal complement of [v;] with respect to f. With side
information given by E([g(X, 6)] = 0, by Example 3.2.3 in Bickel et al.

[5], the efficient influence function is
er (2109, g) = T(es (2100 )¥(2)")

= ef(x[0g) — [1(ef(x[6g)|7(2))
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er(x]00) - < e;({80), 7(g) > [1(g)] ~%(g) (x)

ef(x|60)— A,(eo, g)A_lg(x, 60 )

Thus, I7(80|g) = les(X]00, &)z -

Now, the rest proof is the same as that in Theorem 1, by taking
b = —itIf1(90|g) = —it]es(X]0y, g)||?)0. Similarly, If*(60|g) > If(60|g).
We get

lim gy, (¢) = Elexp{it(W - I (60|)R}]exp{-I7" (0o|g)e* /2}
= exp{=I;!(60|g)t? /2} exp{- Q"1 (60|)¢* /2}Elexpit( W — 17" (00| )S 1]
= ¢Z(t)¢V(t)¢W—I]:1(eo\g)S(t)'

Now take U = W - 1/71(90|g)S, and note that when f£({0) = £.(0),
I:(6g|lg) = If,(6g|g), and V = 0, the proof is complete.

Proof of Theorem 3. We use the same method as in the proof of
Theorem 1. Let a/(x; b, g, h) = bll({’)(x|90, g)+ l;")(x|90, g, h). We used

the index f to denote its dependence on the specified model f(4{6, g). In

this case, as in Begun et al. [2], we have, under P,
kn = Ln(em gn)_ Ln(GO: g)
C 1
- n—l/ZZaf(Xi; b, g, h) -5 I;(8g, &, b, —h)+ op(),
i=1
where I7(8g, g, b, h) = —~EpBs(X; 8¢, g, b, — h). Note When f(6, g)
= fo(), we have (g, g, b, h) = |as(X; 8, g, b, h)|ﬁ30 as in Begun et

al. [2], in which they used Hellinger differential, so the notation o there

differs the o/ used here by a factor f~'/2, and their o® = 4laf], with
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u the Lebesque measure, here we used Hadamard differential, and the

I¢(6g, g, b, h) here will be their 6% when f({6g, g) = fo(-). Note by (6),
Efoaf(X; b, g, h) = 0, and so for fixed (b, g, h),

n
n_1/2zaf(XL7 b; 8, h)gs(b5 8, h) ~ N(O’ c$]2((607 8, b9 h))a
=1
where G/%(eo, g, b, h)=|os(X; 0, g, b, h)||§)0 Thus, as in the proof of

Theorem 1, we have

ow, (¢) = dw (¢) = E[exp{it(W - b) + S(b, g, h) - I7(0¢, &, b, — h)/2}].
Since b e C' and h e H are arbitrary, we first choose h = h; to
minimize c,%(eo, g, b, h). By definition of h;fk, we have af(x; b, g, h) =
b(ps(x) — As(x, k) + Ag(x, bR} + h), and [o;(X; b, g, h)||?30 =
b%lps(X) — Ap(X, hf ), + 1147 (x, bhF + 1) | . VA € IX(By), with ="
iff h = —bh;?. Now take h = —bh;, we get
ow(t) = Elexplit(W — b) + S(b, g, —bhs) - I¢(8g, g, b, bhs)/2}
= Elexp{it(W - b) + bS(1, g, - hf) - b*1:(0y, g, h})/2}.
Now, similarly as before, take b = — itIfl(GO, g, h; ), we have
dw () = Elexplit[W — If' (00, & hf)S(L, g, — hf )}]exp{~I}" (89, g. hj )% /2}.
Similarly as in the proof of Theorem 1, we have I, (09, g, kg, )= I¢(8¢, g, hf)
with  “=” iff ({0, g)=£.(]6,8). Let Q7(8y, g)= 1;*1(90, g h)
[(If, (60, & Ry ) — I(6g, &, h;))fl - 1,7*1(60, g, hy, )]71117*1(907 g, hr),

take U = W — 1;*1(60, g h%)S(L, g, - hf), then
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(I)W(t) = E[exp{it(W - 1;*1(607 8, h;* )S(L 8, — h; ))}]exp{_tQIf_*l(eO’ 8, h;* )/2}

x exp{~17Q71 (09, 8)/2} = by (o2 1)y (2).
This complete the proof.

Proof of Theorem 4. We first generalizes the LAN condition to
B-vaued parameter case. By the Taylor expansion using Hadamard

differentials, we have

Ln(gn)_ Ln(gO)

7\’71,

n
n2 (X205 )
=1

n
1 _ .
tgn 12 I+(X;g0; hy h) + op(1),
=1

the remainder op(1) is by the definition of second order Hadamard

differentiability.

By (C10), Epl/(X, gy, h)=0,Vh e P, so by the central limit
— 12N oy D - :
theorem, Sn =n Zizllf(XllgO’ h’)_)S(h) N(O’ If,l(g07 h, h)),

and by the strong law of large numbers, nt Z?:J}(Xilgo, h, h)a_i EPO

[¢(X|go, h, h) = —1¢(g0; R, h). Thus, we get
1
Ay = S(h)—gff(go; h, h)+op(1).

(i) Let W, =vn(g, — g0), and ¢y(b*) = E[exp{ib*(Y)}]: B* > C
be the characteristic functional of a random element Y € B. The proof

below is true for any inner product < .- >g on B, although < .- >p is

convenient. Let b, € B be the Rize representer of b* for the inner
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product < -->p. Then ¢y(b*) = ¢y(b,) = E[exp{i <Y, b, >g}]. Like
characteristic function for random variables, characteristic functional
and distribution of random element uniquely determine each other in B,
and two random elements are independent iff the characteristic
functional of their summation is the product of those of each other. For
random element, weak convergence implies convergence of corresponding
characteristic functionals, but the convergence of characteristic
functionals of a sequence of random elements to some limit one is not
enough for the weak convergence of the sequence to the corresponding

weak limit, it needs weakly relatively compactness of the sequence {W,, }

(see Theorem 4.3.1, p.224, Vakhania et al. [30]), just like weak

convergence of random processes. However, the weak convergence of W,

in [*(T) is already given in its definition of regularity, so we only need to

show lim, ¢w (s) = 0z(s)dy(s)oy(s) for all s e B.

By regularity of g, and expression of A,, we have
ow, () = Ef(|gy)lexpli <s, W, >B}] = Ef(yg,)lexpli < s, W, -~ >p}]

= Ef(-\go)[eXp{i <s, W, —h > +Ly(g,)~ Lp(80)}] > dw(s)
— Elexpli <s, W —h >p +S(h) —%If(go; h, b)), (A1)

Since [ f( go; - ) 1s positive definite by (C10) and symmetric bi-linear
by definition, so I;(g¢, - ): BxB — R is a positive definite bi-linear
form, thus, there is a symmetric linear operator (covariance operator)
Gf:B - B*, such that I¢(80, My, he) = (Gghy ) (hg) Vhy, hy € B (see,
for example, p.145, Vakhania et al. [30]) . Also, G; has an inverse Gfl
since I7(gg : - ) is positive definite. Without confusion, denote Gy as

the Rize representer of G; for the inner product <-.->g, then



CONVOLUTION REPRESENTATION IN PRACTICE 131

I¢(g0, M, hy) =< G¢hy, hg >g=< hy, Gthy >p. Also, G; has the square-

root decomposition Gy = G}/ 2 onlr/ 2 for some linear operator G}/ 2

(cf. Lemma 1.1 and its proof, p.149, Vakhania et al. [30]). Thus
< hy, Ghy >p =< G{/*hy, G{/*hy >p., Vi, hy € B,

Since the right hand side in (A.1) is independent of 2 by definition of

regularity, we can choose h as we want. Take h = —inls. Then
S(h) = —inlS(s) =-i<l, GfIS(s) >, where < -,- > is the inner product
in Euclidean space, given by < a, b >= ab, Va, b € R. Note [G]?IS](-) is
linear, it has an adjoint (GlFl.S’)T : R —» B, so that <1, GflS(s) >=
< s,(GflS)Tl >g. Also, —i<s, h>g=—-<3s, Gfls >g, — (g0, h, h) =
- < h, G¢h >g=< Gj's, G;G;'s >g=< s, G;'G;G;'s >p=< s, Gf's >p,

and so
. 1
i<s, W-h>p +S(h)—§If(g0; h, h)
—i<s, W—-(G:'S)1 > e T
5 f B 9 5 f B
Now, we have
. _ 1 _
dw(s) = E[exp{i < s, W — (GfIS)Tl >B }]exp{—§ <s, Gfls >g }.

When f ¢ Fy, Vf° e Fyp, Ifo(go; h, k) > I¢(go; h, k), Vh € B.  Write
Ir(go; b, h) = Ifo(go; h, h) - [Ifo(go§ h, k)= 1¢(go; h, h)] = Ifo(go§ h, h) -
Is(go; h, h). Let Gf_°1 and G5' be the counter parts of G/FI, corresponding

to Ifo(go;h, h) and Is(go, h, h), then Gs' is positive definite
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and < s, G;Ols >B=< S, Gfls >+ < 8, Ggls >B, Vs € B. So, we get
ow (s)= Elexpli<s,W—(G7'S) 1> }]exp{—%<s,G;ols>B }exp{—%<s,G§ls>B L
On the right hand side above, the second factor is the characteristic

functional ¢;(s) of the Gaussian element Z with (Pettis) mean zero and

covariance functional If_l( g0 S, 8) =<, G;Dls >p, while the first factor

is the characteristic functional ¢7(s) of U :== W — (Gl?lS)Tl, the third is
that of the Gaussian element with mean zero and covariance functional

<s, Gy Ig >p, and the factorization implies U, V, and Z are independent.

(i) In this case, I;(go;h, h)=1;(80; h, h)= E[l;(X|gg, h)if
(X|gg, h)]. We use van der Vaart’s differentiability to find the
expression for If_ol(go, .+ ). Let y(g) = g be the parameter of interest, it
has Hadamard differential, in the direction A, is #(g; h) =h: B - B =
I2(Py). Let $"(g;-): B > B = L?(P,) be its adjoint, then for fixed g,

<9"(g; h), b >L2(P0):< h, v(g; b) >L2(P0):< h,b >L2(P0)’ Vh,b e B. Thus,

$7(g; b) = b, Vb € B. For each fixed b* € B*, we have b'[i(g; h)] =

< b'¥(g; h), 1 >=< ¥(g; h), b. > =< h, p7(g; by) > Vh € B,

I*(Py) X(Py)
where b, is the Rize representer of b* with respect to the inner product

< . In this way, we also identify $"(g; ) as a linear operator:

TRy
B* > B, by defining §7(g; b*) = 7 (g; b ). Let I ({20, h) : L*(Py) > B
be the adjoint of I;(-gg, ), which is determined by < I;(|gg. 2), b >p,
=< h, i}(~|g0, b) >p,, Yh,b e B. Since by assumption, we have

B =R (g, )= R(i;(x|g0,~ )), and note pathwise differential is a type
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of Hadamard differential, by Theorem 5.4.1 (Bickel et al. [5], p.202), the
efficient influence function I (x|gg,- ) : B® - B for estimating b*gq is

the solution of the equation
i7 (x]g0. T(xlg0, b")) = ¥"(g0: b.) = b, V0" € B,
and the inverse information covariance functional T £ 1( go;-):B"xB* > R
for g is
17 (g0, b7, b3) = Ep [1(X]go. b)) (X|g0. 3)]

Thus, the optimal achievable lower bound of the asymptotic variance for

estimating b*g, based on the model f(|g) is Ifl(go, b*, b").



